A random map implementation of implicit filters
نویسندگان
چکیده
Implicit particle filters for data assimilation generate high-probability samples by representing each particle location as a separate function of a common reference variable. This representation requires that a certain underdetermined equation be solved for each particle and at each time an observation becomes available. We present a new implementation of implicit filters in which we find the solution of the equation via a random map. As examples, we assimilate data for a stochastically driven Lorenz system with sparse observations and for a stochastic Kuramoto-Sivashinski equation with observations that are sparse in both space and time.
منابع مشابه
State estimation in large-scale open channel networks using sequential Monte Carlo methods: Optimal sampling importance resampling and implicit particle filters
[1] This article investigates the performance of Monte Carlo-based estimation methods for estimation of flow state in large-scale open channel networks. After constructing a state space model of the flow based on the Saint-Venant equations, we implement the optimal sampling importance resampling filter to perform state estimation in a case in which measurements are available at every time step....
متن کاملMulti-Sensor Perception and Dynamic Motion Planning in City Environments
In this paper we describe a state lattice based motion planning approach, which we have successfully applied to large, cluttered, but quasi-static environments. Our approach produces smooth and complex maneuvers through the use of a multi-resolution state lattice, where the resolution is adapted based on the environment, and distance from the robot. We also describe a framework for detecting dy...
متن کاملDesing And Implementation of Adaptive Active Filters for Exact Estimation And Elimination of AC Network Distortions
In recent years, active filters have been considered and developed for elimation of harmonics in power networks. Comparing with passive, they are smaller and have better compensating characteristics and resistance to line distortions. In this paper, a novel idea based on adaptive filter theory in presented to develop an active filter to eliminate the distortions of an arbitrary signal. Using th...
متن کاملDesing And Implementation of Adaptive Active Filters for Exact Estimation And Elimination of AC Network Distortions
In recent years, active filters have been considered and developed for elimation of harmonics in power networks. Comparing with passive, they are smaller and have better compensating characteristics and resistance to line distortions. In this paper, a novel idea based on adaptive filter theory in presented to develop an active filter to eliminate the distortions of an arbitrary signal. Using th...
متن کاملUnscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 231 شماره
صفحات -
تاریخ انتشار 2012